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Outline for talk

*Overview. Science motivation. Annealing History.
(M. Halem)

*Describe the development, testing and machine learning neural net algorithmic tool for the
D-Wave2X quantum annealing computer (QAC) at ARC.
(J. Dorband, C. Pelissier, N. Tilak, S. Lomonaco, A. Shehab)

*Ingest and process 2 years of OCO-2 concentrations of CO2, collect ground truth ARM and
Ameriflux data for 3 sites, assess accuracies of CO2, train QAC NN to infer collocated CO2 fluxes
using D-Wave NN tool and ground truth data and then apply to non collocated OCO-2 observations.
(M. Halem, P. Gentine, A. Radov, J. Dorband, R. Prouty)

*Incorporate NCAR photosynthetic parameterizations into the GSFC LIS land cover model and test
Kalman filtering data assimilation of NEE by performing OSSEs and real CO2 fluxes.
(K. Harrison, G. Nearing, P. Gentine, M.Halem, R. Prouty, C. Pelissier)

*Provide NDVI data coverage for 2 years for the 3 test sites employing QAC NN for image
registration.
(J. LeMoigne, D. Simpson, A. Shehab)
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Fig. 1. Observed peak-to-trough seasonal amplitude (A) and phase (B), given by the day of year of downward zero crossing, of
COz concentration at Barrow (71°N, blue) and Mauna Loa (20°N, black) measured by the Scripps COz Program (7, 8) and the
NOAA Global Monitoring Division (9). Growth rate of amplitude is given in percent change per year, with one-sigma uncertainty
of #0.05-0.07% year-1. Seasonal COz cycles observed at Barrow (C) and Mauna Loa (D) for the 1961-63 or 1958-63 and 2009-11
time periods. The first six months of the year are repeated.

Graven,H.D. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341,
1085-1089 (2013).



1 we predict the Hyper

Why is biological
Will satellite observations of surface CO2 improve hydrological predictions of net ecosystem exchange?
Can quantum annealing computers effectively and efficiently answer the above two science problems?

ORBITING CARBON LAND SURFACE MODEL D-Wave Quantum Annealing
OBSERVATORY CARBON UPTAKE Boltzmann Machine
W sun N carbon dioxide
Satellite Observation — “ i ‘ 6N
Vegetation water d . Wi,
content signal

Canopy
attenuation

A
Surface emission
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Measures surface CO2 Vegetation model assimilates NN trains CO2 to infer CO2
from space CO2 fluxes for photosynthesis Fluxes from Station Data



History of Simulated and Quantum Annealing

*Annealing, is a heat and cooling process that alters the physical and chemical properties of a material
by the diffusion of atoms within a solid material towards its equilibrium state (to increase ductility,
reduce hardness and relieve internal stresses by minimizing the amount of Gibbs free energy). Heat
increases the rate of diffusion by providing the energy needed to break bonds. Controlled cooling
strengthens material by reducing to a lattice crystal structure ground state with minimum energy.

*N. Metropolis, et.al., "Equation of State Calculations by Fast Computers.” J. Chem. Phys. 21, (1953).

*The Metropolis algorithm is among the ten algorithms that have had the greatest influence on the
development and practice of science and engineering in the 20" century (Beichl& Sullivan, 2000).

*W K. Hastings, “Monte Carlo Sampling Methods Using Markov Chains and Their Applications”
Biometrika 57 (1970).

* S. Kirkpatrick et. al., “Optimization by Simulated Annealing” Science 220 (1983). A method for
efficient techniques for finding minimum or maximum values of a function of very many independent
variables, usually called the cost function.

*T.Kadowaki, H. Nishimori. “Quantum annealing in the Transverse Ising Model” Phys. Rev. 58 (1998).
They proposed theory of quantum annealing; that quantum fluctuations cause transitions between states
and play the same role as thermal fluctuations in simulated annealing for finding the minimum of a
multivariable objective (cost) function.



Quantum chip with 1097 “gbits”

Binary system

State

Measurement

Interaction between
bits

Classical bit

S N
T

Josephson

““Superconducting qbits

Simultaneous Either O or 1.
superposition.

) AV =0or AV #0
¢=E(M>+I¢>)
Probabilistic. Deterministic.
“Chimera graph” None.




Computing on the DWAVE

Quadratic Unconstrained Binary
Optimizations (QUBOs)

Restricted Boltzmann Machines (RBM)

Numerical Task:

min0(q), O = Z&ij%’% , ¢ €(0,1)
J
a;; = user specified “couplings”.

Results: collect statistics and take the BEST

solution. . .
Solution Statistics

0.20 -

Energy/solutions

Numerical Task: train a RBM neural network
using “contrastive divergence”.

Stochastic Binary Neural Network

hidden

DWAVE searches the entire space and
returns potential candidates for the global
minimum.

e :“\\_,_-—“""—/

k k+1
Q5 — aij Generate Boltzmann

. statistics
update coefficients

DWAVE is a physical realization of a RBM!




Quantum Annealing Studies

Implemented a quantum-based RBM on the D-Wave as a general tool for
applications of neural nets.

Evaluate the RBM tool by employing same C Code for RBM evaluations
on classical computer.

Tested a purely RBM tool (no connections between neurons/qubits) using
MNIST data for 100 training cases, 100 test cases.

Both classical and quantum version of RBM attained an accuracy on or
near 100% for MNIST training data.

Classical attained 70% on test data while quantum attained near 60%.
Implemented Deep Learning on D-Wave; 1 to 3 hidden layers partially
connected BM.

Virtual qubits allow for more connected cost functions. Studied behavior
of virtual qubits, conducted stochastic measurements of qubit chains,
compared to theoretical qubit chain behavior, appears to be stable.



BM Evalu

Classifying hand-written digits
from the MNIST dataset into 10
classes.

*Each sample is a 28x28 gray-scale
image.

*We used 100 samples for training
and 100 samples for testing our
RBM model.

*RBM used had 794 input nodes
and 1100 hidden nodes.
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Venezuela
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STATE OF PARA

Brazil
STATE OF ACRE

STATE OF
RONDONIA

Barrow, Alaska Oklahoma City, Oklahoma K34, Brazil

* 3 primary regions selected for observations:
«  Barrow, (69.0,-162.0) (71.4,-152.0),0klahoma City, (34.5,-99.5)(36.5, -96.5), K34, Brazil (-3.6, -61.5) (-1.6, -59.0)

* 0CO2 - Orbiting Carbon Observatory 2 Launched July of 2014. Level 2 lite data has been collected and processed
since September of 2014 and still being collected daily.

* DOE - Atmospheric Radiation Measurment (ARM)
Carbon Dioxide measurements collected for all 3 sites from 2001 until July of 2015.

*  ONRL Fluxnet/Ameriflux (NASA DAAC)
A "network of regional networks," coordinates regional and global analysis of observations from

micrometeorological tower sites
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e The satellite tracks, along with CO2 values have been mapped using http://www.hamstermap.com/ a google

maps tool, to help visualize the data. This technique allows for interactive zoom options, as well as CO2 level,
point by point comparisons.
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e All OCO-2 targeted samples fall within 10 mile radius of the ARM tower

® On this particular case, there are over 4300 targeted samples taken during the
OCO-2 overpass
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10/3/2014

395.665179

395.4361724

10/30/2014
386.3332819
394.6344485
390.9355092
395.7083233

11/24/2014
401.2256545
404.8536971
396.8365043
398.0109639

1/25/2015
398.1087561
398.2196341
429.9921762

397.398894

2/10/2015
413.8416835
410.2235257
400.8079616
400.9904037

2/19/2015
397.7759594
396.5604284
399.9970837
400.0255873

6/20/2015
403.7240008
397.6349329
394.4884016
401.5713586

7/11/2015
403.1288341
391.7279216
390.7480839
404.4339711
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Training Data Set: Atmospheric Radiation Measurement

(ARM)
Measured quantities: Measured at heights:
1. CO2 concentration 1. 4 meters
2. H20 concentration 2 16 meters
3. Temperature
A Pressure 3. 25 meters
5. Wind Speed
6. Horizontal Wind Data samples:
Direction 30 minutes apart
7. Rotationt
oraron oW | | Dec 2002 — Oct 2014
8. Rotation to zerov
9. CO2 Flux Around 180k samples.




Pressure horizont | rotation | rotation
(kPa) alwind |tozero |tozero
directio | w(theta) | v(phi)
n

Min -140.5 0.0792 O -17.31 0.38 0.158 0.0087 O 0
Max 69.271 139.33  2108.7 40.55 100.95 15.314 359.99 61.592 180.00
Average -0.626  16.092 688.89 21.8193 97.7852 4.6211 173.368 1.416 73.327

Standard 44978 1.7935 384.35 9.57815 1.6441 2.5330 94.668 1.1683 60.240
Deviation

10 years of 72 hour ARM measurements : 48 * 365* 10 =175,200
2 years of OCO-2 CO2 at ARM station: 5 * 26 * 2 * 4000 = 1,040,000
3 Sites: Barrows, Oklahoma City, K34 Amazon

Obtain Attributes from MERRA and repeat calculations with measured and observed CO2.



Prediction Accuracy of Feed-
forward Neural Network

1. Error for complete test data

Mean Error

0.065

Error standard deviation

3.936

Root Mean Squared Error

3.939

2. Error for test data after removing outliers

Mean Error

1.133

Error standard deviation

4.43

Root Mean Squared Error

4.58




Prediction Accuracy of RBM

1. Error for complete test data

Mean Error 12.67
Error standard deviation 4.30
Root Mean Squared Error 13.38

2. Error for test data after removing outliers

Mean Error

6.60

Error standard deviation

2.62

Root Mean Squared Error

7.10




Current Studies

It was pointed out that NN need net surface radiation as
critical input for inferring CO2 fluxes.

*The prediction accuracy for RBMs also suffers due to noise in
the data. Comparatively, feed-forward neural networks are
more tolerant to noise.

* Implementing an alternative training algorithm for RBM
regression application other than contrastive divergence.

*We observed that the ARM data is noisy and contains a
number of outliers. We need to carefully curate this data or
use multiple sources of measurements.



Main role of LIS in QAC project

Introduce NCAR photosynthetic parameterization into LIS model.
To use as the baseline for measuring the added value of data assimilation
As training data for a machine-learning observation operator

We have completed a 10-year CONUS run and a 5-year global run.

. Noah-MP is NCEP’s newest version of the WRF with lower boundary
condition. It is 1%t version with dynamic carbon partitioning and fluxes.

. About 1350 hours of CPU time per year of simulation at 1/8 degree spatial
resolution, 15 minute temporal resolution.

3. NLDAS parameters and forcing data for the CONUS run.

. GLDAS parameters and Princeton forcing for global run.



Uncoupled or LIS - OPT/UE
Analysis Mode

Optimization and Uncertainty Estimation ¢ Coupled or
(LM, GA, RW-MCMC, DEMC) @ Forecast Mode
LIS - DA Weather

EnKF | <—|

Observations (Soil
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Temperature)
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MERRA2 ™ 1998)
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Kumar et al. (2006), Env. Modeling and Software, Peters-Lidard et al (2007), Innovations in Systems and Software Engineering




Noah MP: Global run: NEE seasonal cycle

JAN

NEE (g/m?d)



Noah-MP Data Assimilation

Basic Testing of a Kalman-Type Data Assimilation Algorithm for Surface
Carbon Flux

* The basic finding is that even the “best-case” scenario (i.e., assimilation of
relatively accurate in situ observations) is difficult because of the highly-
nonlinear relationship between vegetation and soil carbon stores and NEE
(net ecosystem exchange).

* Thus, this is a perfect candidate for nonlinear DA like what we are proposing
to do with Boltzmann Machines.

* We used Kalman-type (locally linear) DA schemes at 10 heavily instrumented
FluxNet sites over different biomes and found three major types of results
(examples of each in following slides):

1. DA worked. In these cases the model had some ability for realistic NEE.
2. Predictions had some bias in more than half of the test cases

3. Both prior and posterior DA results were nonsense. NEE is hard to
predict without accurate model parameterization. Model predictions in
some locations were unrelated to observations.

4. Assimilation strategy worked in 1 out of 31 cases.



NEE (g/m?*d)

NEE (g/m?d)

NEE (g/m?d)
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Showing daily min
and max as there are
large fluctuations
within and across
days
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Retrieval Results T
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LIS model needs Vegatation Land Cover

*Image Registration Challenge: given two Earth
remotely sensed images, determine the
transformation (e.g., composition of translation and
rotation) that transforms one image into the other.

*Efforts in implementing image registration on the D-
Wave have focused on using neural networks.

*Other methods have been considered, but neural
networks seem to be most suited for the D-Wave
computation model.



Restricted Boltzmann Machine

* A Restricted Boltzmann Machine (RBM) has been implemented
on a conventional computer. Test images used for the network:
- Ohio River (ground-based radar with artificial translations)
- Landsat images (with real translations and rotations)

*RBM “votes” on what translations it thinks it sees 1n a test image

* Results were met with some success, but RBM often does not
find the correct transformation.

*RBM has so far been implemented entirely on a conventional
computer. Implementation entirely on the D-Wave 1s limited by
D-Wave qubit capacity: images are larger than can be stored on

the D-Wave.



Feed-forward Neural Network

*The most promising approach to date appears to be
using the D-Wave to compute weights for either a
conventional feed-forward artificial neural network
or an RBM. This would use the D-Wave as a kind of
co-processor to a conventional computer:

—Weights would be computed on the D-Wave
—Actual feed-forward or RBM network would be
implemented on a conventional computer.

*Computing weights through training is the most
time-consuming part of a neural network
implementation, so this is a good place to leverage
the D-Wave capabilities.



Status of Quantum Annealing Machines

NASA has acquired the D-Wave 2X system at ARC in collaboration with Google with more than
1,000 working qubits that realizes quantum annealing at the hardware level. Papers seem to indicate
that quantum annealing is indeed realized in the machine.

TARPA has issued a solicitation for a Quantum-Enhanced Optimization program. The goal is to
build a prototype quantum annealer of about 100 qubits with high-performance superconducting
qubits with more complex connectivity between qubits.

DOE has acquired the Dwave 2X system at LANL and set up a forum Quantum for Quants to
discuss and present issues related to the perspective of quantum annealing.

NSF, Director France Cordova, has unveiled a 9 point research agenda to shape the agency's next
few decades. The next quantum revolution is one of 6 research areas.

Google has announced they are developing a gate-model quantum computation platform to simulate
quantum annealing. It is not yet known that they have constructed a large-scale systems that can
supersede the D-Wave machines with error-correcting codes fully implemented which can support
large numbers of qubits.

NIST maintains an archive of more than 200 quantum algorithms for Gate and Annealing systems
and still growing.



Projected Quantum Annealing Computers: TRL

D-Wave 2X June 1, 2016 TRL=3
D-Wave 3X June 1, 2017 TRL=4

*Google Group: quantum annealing architectural
primitives not available Est. TRL =4/5

 Lincoln LabsJune 1, 2017 TRL= 4
e Lincoln Labs June 1, 2018 TRL= 5
 Lincoln Labs June 1, 2020 TRL= 6/7






Quantum Gate comparisons with Quantum Annealing

Gate model

Quantum annealing

Target Universal computation Combinatorial optimization
Strenoths A few algorithms are proven to be exponentially faster than | Many problems of practical importance, such as machine learning, can
g their classical counterparts. be represented as combinatorial optimization. Resilient against noise.
Very susceptible to decoherence, i.e. easily destroyed b .
o P . LY Y€ OV Problems are yet to be found that can be solved exponentially more
Weaknesses noise. Faster than conventional machines only for a few . . Lo
tasks efficiently than by classical methods and are of practical significance.
Current Status of About 10 qubits ions, photons, quantum dots, . e
. d ( P q More than 1,000 qubits (superconducting circuits)
Implementation |superconductors,..)
B Needs extremely many qubits, millions or more, if one| Will need tends of thousands of qubits. May be realized within a

implements error corrections. Will take decades to realize.

decade.




http://www.nasa.gov/press-release/as-earth-warms-nasa-targets-other-half-of-carbon-climate-equation

e http://www.arm.gov/sites

http://www.archive.arm.gov/discovery/#v/results/s/fcat::carbon

http://www.archive.arm.gov/discovery/#v/home/s/
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QAC Accomplishments on D-Wave To Date (CONT.)

Implemented Noah MP model of photosynthesis into GSFC LIS model and conducted
a 10 year global OSSE LIS-Noah model run including Alaska and Amazon of an OSSE to evaluate
land surface model predictions from OCO-2 data assimilation. (G. Nearing, K. Harrison)

Testing solution of observation cost function blending of a 3-D variational or Kalman filter formulation of
the LIS-Noah model CO2 flux prediction with the derived CO2 flux from OCO-2 using the BM NN
algorithm. (G. Nearing, C. Pelissier,K. Harrison, P. Gentine ).

Performed monthly sun induced Fluoresence calculation from Gome-2, ERA-Land,
FLUXNET-MTE on a classical feed forward perceptron NN with cross entropy cost function
to eliminate outliers. (P. Gentine, Columbia U)

Performed image registration of MODIS EVI data vegetation Indices for 3 sites initially using classical
neural nets. (J. LeMoigne, D. Simpson, GSFC)

Developing HAAR wavelet algorithm for image registration implementation with full adder on D-
Wave. ( A. Shehab, S. Lomonaco, J. LeMoigne)

Simulation Studies for comparison of time continuous CO2flux assimilation with D-Wave and classical
computer BM implementation. (G. Nearing, K. Harrison, R. Prouty, M.Halem, GSFC,UMBC)

Established strong collaboration with AMES Quantum Al Lab. Held several face to face meetings with
their staff and exchanged progress on D-Wave algorithms and quantum performance. Submitted AGU
session on “QAC for ESS Applications” with T. Lee, R. Biswas, M. Halem, A. Ortiz



Simulated Annealing and Quantum Annealing

*The phenomena of quantum superposition and tunneling imply that
certain types of energy landscapes can be more efficiently explored by
guantum annealing than classical simulated annealing [1].

eComparison of quantum annealing and simulated annealing- H. Nishimori

* Mukherjee, S. and Chakrabarti, B.K. (2015) Multivariable optimization:
Quantum annealing and computation. Eur. Phys. J. Special Topics 224, 17—
24,



Team Presentations

C. Pelissier- Computing on the Dwave- QUBO, RBM,H/W Overviews.

J. Dorband - Deep Learning Boltzman Machine, Characterization of Qubit Chain on D-Wave;
A. Radov — ARM Tower data, CO2, CO2 fluxes and colocation statistics.

N. Talik-CO2 Flux Prediction Using Restricted Boltzmann Machines

K. Harrison- 10 year Global LIS-Noah CO2 flux predictions and NEE.

P. Gentine — Classical NN prediction of Sun Fluorescence from GOME-2

D. Simpson- MODIS image registration using NN

O. Shehab —Implementation of full adder on Dwave for HAAR Wavelets

M. Halem- Next 6 Months Activities



